Backstepping Control of Dual Stator Induction Generator used in Wind Energy Conversion System

BENAKCHA Meryem *, BENALIA Leila *, TOURQUI Djamel Eddine **,
BENAKCHA Abdelhamid***

* Electrical engineering Laboratory (LGE), M’sila University, BP 166, Algeria
** Energy Engineering and Computer Engineering Laboratory (L2GEG), Tiaret University, BP 78, Algeria
*** Electrical engineering Laboratory of Biskra (L Geb), Biskra University, BP 45, Algeria

(benakcha.meryem@gmail.com, leila_bena@yahoo.fr, tourqui.djamel@gmail.com, ab.benakcha@gmail.com)

‡Corresponding Author; BENAKCHA Meryem, BP 166, Algeria, Tel: +213 664492465,
benakcha.meryem@gmail.com

Received: 13.09.2017 Accepted: 05.01.2018

Abstract- This paper presents the wind energy conversion system with a variable speed of wind turbine connected to the grid based on the dual stator induction generator (DSIG) which is controlled by backstepping technique approach. DSIG is increasingly used because of its advantages as better reliability and supply division. DSIG consists of two fixed three-phase stator windings which necessitates having in parallel two converters with a displaced angle of 30° between the two sources and being controlled at the same time. The use of the classical PI regulators has shown some limitations in their synthesis. Due to this down side, the aim of this work is to apply the backstepping technique for replacing the PI controller into a field oriented control (FOC) structure. The backstepping technique is a systematic and recursive method of synthesis of nonlinear control laws from the Lyapunov functions which ensure step by step the stabilization of each synthesis step. With this algorithm, the feedback control law is constructed to control the power produced from the wind energy. The effectiveness of the proposed control is demonstrated through an illustrative simulation.

Keywords- Variable Speed, Wind Turbine, Maximum Power Point Tracking (MPPT), Dual Stator Induction Generator, Field Oriented Control, Backstepping Control.

1. Introduction

In the development of any country, the energy plays a vital role. For centuries, wind energy has been used to provide mechanical work [1]. The best known example is the windmill used by the miller to process wheat into flour. Subsequently, for several decades, wind energy was used to generate electrical energy in remote locations and thus not connected to an electrical grid. Installations without energy storage imply that the energy requirement and the presence of wind energy must be simultaneous. The control of the storage of energy in batteries allows to store this energy and the multiplication of domestic electrical appliances and lets to considerable planetary needs in electrical energy [2]. Since the 1990s, the improvement of wind turbine technology permits to build wind turbines of more than 5 MW and the development of wind turbines of 10 MW is under way [3]. These wind turbines are used today to produce alternating current for power grids, as well as a nuclear reactor, a hydroelectric dam or a coal-fired power plant. However, the powers generated and the impacts on the environment are not the same [4, 5]. Wind energy is the cleanest energy that does not directly produce carbon dioxide, sulfur dioxide, mercury or fine particles. It is an abundant source of energy entirely free [6]. The wind conversion system is composed of minimum elements able to optimize the transfer of the wind energy. Ideally, only one turbine, one transmission shaft, one rotating electrical generator and unidirectional or
bidirectional electronic converters are required [7]. The mechanical characteristics of the wind turbine, the conversion efficiency of the mechanical energy into electrical energy are very important [8]. Many devices exist and, for the most part, they use synchronous or asynchronous machines. The control strategies of these machines and their possible interfaces to the network must make it possible to capture as much energy as possible over a range of wind speed variation in order to improve the profitability of wind installations [9]. The studied system here consists of an aero generator three-bladed, with horizontal axis, connected to the network by the dual stator induction generator (DSIG). In term of wind energy and grid integration, it is very interesting to produce a quality output power. Therefore, the control of the generator is very important. Many techniques have been used to control the DSIG such as a sliding mode control (SMC) associated to the field oriented control [10]. Genetic Algorithm Optimized PI and Fuzzy Logic Speed Vector Control [11], model reference adaptive system based reactive power controller [12], nonlinear method based on the theory of fuzzy logic controlled torque [13], control of the DSIG using the instantaneous power theory and a control flux orientation at low speeds [14].

This type of machines has some advantages compared to other types of induction machines, such as power segmentation, minimizing torque ripples, reducing rotor harmonic currents and the use of the latter in wind projects of which powers are of a few MW [10, 15]. A high performance control device requires in general a good response in regulation and must be not very sensitive to the variations of operating conditions and system parameters [16]. There are nonlinear control techniques that present simplicity of implementation interest and a facility of the regulators gains synthesis. The application of these techniques requires also the knowledge of the system parameters [17]. Backstepping control is part of these new control methods. It is a recursive technique used in increasingly complex systems. It was developed by Kanellakopoulos and al. (1991) which were inspired by the works of Feurer and Morse (1978) on the one hand and Tsinias (1989) and Kokotovic & Sussman (1989) on the other [18,19,20]. The basic idea of backstepping control is to make looped systems equivalent to cascaded first order subsystems, stable in the sense of Lyapunov, which gives it robust qualities and an asymptotic global stability [21]. The paper aims to present the backstepping control law for the DSIG used in the wind energy conversion system connected to the grid. This law is established step by step while ensuring the stability of the loop machine closed. The mathematical model of the entire system should be studied and detailed. The obtained results using Matlab/Simulink software will be examined and interpreted.

2. Wind Turbine and gearbox modeling

The power available by derivation of the kinetic energy of the air mass passing through the surface S swept by the turbine is [22]:

\[P_w = 0.5 \rho SV^3 \]

(1)

In this expression, \(V \) represents the wind speed assumed to be constant over the entire surface \(S \). The power coefficient can be defined by:

\[C_p = \frac{P_t}{P_w} \]

(2)

So, this power coefficient \(C_p \) is the aerodynamic efficiency of a wind turbine and its evolution is specific to each turbine and wind speed. It depends on the blade pitch angle \(\beta \) and the speed ratio \(\lambda \) which is expressed by:

\[\lambda = \frac{R g}{V} \]

(3)

where \(R \) is the blade radius.

In this work, we use for the power coefficient the following expression [3]:

\[C_p = \left[0.73 \left(\frac{151}{\lambda} \right) - 0.002 - 13.2 \right] \exp \left(\frac{-18.4}{\lambda} \right) \]

(4)

With

\[\lambda = \frac{1}{(\lambda + 0.08 \beta) - 0.035/(\beta^3 + 1)} \]

The transmitted power \(P_t \), captured by the wind turbine, is given by [23,24]:

\[P_t = C_p(\lambda, \beta)P Sv^3 \]

(5)

The torque of the turbine is the ratio of the transmitted power to the shaft speed \(\Omega_t \). It is given by:

\[T_t = \frac{P_t}{\Omega_t} \]

(6)

The optimum speed of the current turbines is in the vicinity of a few tens of revolutions per minute. This requires the introduction of a gearbox between the turbine and the electrical machine whose gear ratio \(G \) is chosen in order to set the generator shaft speed within a desired speed range. Neglecting the transmission losses, the torque \(T_g \) and shaft speed of the wind turbine \(\Omega_g \), referred to the generator side of the gearbox, are given by:

\[T_g = \frac{T_t}{G}, \Omega_g = \frac{\Omega_t}{G} \]

(7)

The mechanical equation can be expressed as:

\[Jp\Omega_{mec} = T_g - T_em - f\Omega_{mec} \]

(8)

For the value \(\beta = 0 \), the graph of \(C_p(\lambda) \), given in Fig.1, is plotted using expression (4). The conversion device extracts a power less than the theoretically recoverable power due to non-zero speed of air masses upstream of the turbine. This presents a theoretical limit called the Betz limit which corresponds to \(C_{pmax} \) [3, 9].
The maximum power point tracking (MPPT) algorithm permits to maximize the electric power extracted from the wind energy [8, 23]. The tip speed ratio should be kept around its optimal value λ_{opt}. The reference speed Ω_{mec}^* can be written as:

$$\Omega_{mec}^* = \left(\frac{R_{opt}}{V} \right) G$$

(9)

The block diagram of the turbine model with the control of the speed is represented in Fig.2.

Fig. 2. Block diagram of the turbine model with variable speed control.

3. Modeling of the DSIG

The dual stator induction generator (DSIG) consists of a mobile rotor winding and two fixed three-phase stator windings displaced with an electrical angle $\alpha = 30^\circ$. The windings axes of each star are displaced with an electrical angle $2\pi/3$ and fed by a balanced voltages system, creating a slipping magnetic field in the air-gap. The rotor is a squirrel cage consisting of conducting bars short-circuited by a conductive ring at each end. Fig.3 shows schematically the windings of the DSIG. The quantities relating to the two stars (1 and 2) will be denoted by $s1$ and $s2$ respectively. The mathematical model of the DSIG is derived from the PARK theory in order to simplify the differential equations as shown in Fig.3 [10, 13, 15].

Fig. 3. Schematic of DSIG in (dq) frame.
The simulation of the DSIG is carried out using the state representation [21]:

$$[I] = [L]^{-1}([B][U] - \omega_g[C][I] - [D][I])$$ \hspace{1cm} (10)

Where:

$$\omega_{gl} = \omega_s - \omega_r, \quad \omega_r = p \cdot \Omega_{mec}$$

$$[U] = [v_{ds1} v_{qs1} v_{ds2} v_{qs2} v_{dr} v_{qr}]^T$$

$$[I] = [i_{ds1} i_{qs1} i_{ds2} i_{qs2} i_{dr} i_{qr}]^T$$

$$[C] = \begin{bmatrix}
R_{s1} & -\omega_s(L_{s1}+L_m) & 0 & -\omega_s L_m & 0 & -\omega_s L_m \\
\omega_s L_m & 0 & 0 & 0 & 0 & 0 \\
0 & -\omega_s L_m & 0 & \omega_s L_m & 0 & 0 \\
\omega_s L_m & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
(L_{s1}+L_m) & 0 & L_m & 0 & L_m & 0 \\
0 & (L_{s1}+L_m) & 0 & L_m & 0 & L_m \\
L_m & 0 & L_m & 0 & L_m & 0 \\
0 & L_m & 0 & (L_{s2}+L_m) & 0 & L_m \\
0 & 0 & L_m & 0 & (L_r+L_m) & 0 \\
0 & 0 & 0 & 0 & 0 & (L_r+L_m)
\end{bmatrix}$$

$$[D] = \frac{L_m}{L_{ds1}}[l_{ds1} + i_{ds2}]\phi_{dr} - (i_{ds1} + i_{ds2})\phi_{qr}$$ \hspace{1cm} (11)

The active and reactive powers are described by:

$$P_s = v_{ds1}i_{ds1} + v_{qs1}i_{qs1} + v_{ds2}i_{ds2} + v_{qs2}i_{qs2}$$

$$Q_s = v_{qs1}i_{qs1} - v_{ds1}i_{qs1} + v_{qs2}i_{qs2} - v_{ds2}i_{qs2}$$ \hspace{1cm} (12)

3.1. Field oriented control of DSIG

The electromagnetic torque is expressed by:

$$T_{em} = P \frac{L_m}{L_{mq} + L_{m}} \left(i_{qs1} + i_{qs2} \right) \phi_{dr} - \left(i_{ds1} + i_{ds2} \right) \phi_{qr}$$ \hspace{1cm} (13)

The objective of the backstepping type control is to allow the control of the output variables (flux, speed). To impose a trajectory on these outputs, we have chosen, as intermediate variables, the stator currents that must follow their reference values defined by the command. Finally, we compute the necessary voltage commands (stator voltages) by respecting at each step the stability of the associated Lyapunov function [20]. The synthesis of the regulators is therefore divided into two parts. However, the system must be in the pure parametric form, to apply the Backstepping control, the system must be in strict feedback form [26, 27].

A. Step 1:

In order to design a control law of the backstepping type allowing the tracking in speed and in flux for the machine, we define the errors of tracking in speed and flux:

$$\begin{align*}
\epsilon_1 &= \Omega^* - \Omega_{mec} \\
\epsilon_2 &= \phi_{dr}^* - \phi_{dr}
\end{align*}$$ \hspace{1cm} (14)

The derivatives of (14) are:

$$\begin{align*}
\dot{\epsilon}_1 &= \dot{\Omega}^* - \dot{\Omega}_{mec} \\
\dot{\epsilon}_2 &= \dot{\phi}_{dr}^* - \dot{\phi}_{dr}
\end{align*}$$

The first Lyapunov function is chosen as:

$$V_1 = \frac{1}{2} (\epsilon_1^2 + \epsilon_2^2)$$ \hspace{1cm} (15)

Its derivative is:
\[V_1 = e_1 \dot{e}_1 + e_2 \dot{e}_2 \]
\[= e_1 \Omega^* \frac{1}{L} \left[\mu (i_{qs1} + i_{qs2}) \varphi_{dr} - T_r - f_i \Omega \right] + e_2 \varphi_{dr'}^* - \left[-\alpha \varphi_{dr} + \alpha L_m (i_{ds1} + i_{ds2}) \right] \]
(17)

The basic idea of the Backstepping method consists in calculating a control law in order to guarantee that the derivative of the Lyapunov function is always negative \((V_1 < 0)\), by choosing the references of the current components that represent the stabilizing functions as follows:
\[\begin{aligned}
 & i'_{qs1} + i'_{qs2} = \frac{j}{\mu \varphi_{dr}} \left[K_1 e_1 + \Omega^* + \frac{T_r}{j} + f_i \Omega \right] \\
 & i'_{ds1} + i'_{ds2} = \frac{1}{\alpha L_m} \left[K_2 e_2 + \varphi_{dr'}^* + \alpha \varphi_{dr} \right] \\
\end{aligned} \]
(18)

where \(K_1, K_2\) are positive constants.

We suppose that the two stars have the same values of the reference currents:
\[i_{ds1}^* = i_{ds2}^*, \quad i_{qs1}^* = i_{qs2}^*. \]

B. Step2:

For this step, our objective is to calculate the control voltages. Other errors concerning the components of the stator currents and their references are first defined:
\[\begin{aligned}
 & e_3 = i'_{qs1} - i_{qs1} \\
 & e_4 = i'_{ds1} - i_{ds1} \\
 & e_5 = i'_{qs2} - i_{qs2} \\
 & e_6 = i'_{ds2} - i_{ds2} \\
\end{aligned} \]
(19)

With this definition and taking into account the system (13) the derivatives of (19) are written:
\[\begin{aligned}
 & \dot{e}_3 = i'_{qs1} - i_{qs1} = i'_{qs1} - \frac{1}{L_1} \{ v_{qs1} + \sigma_1 \} \\
 & \dot{e}_4 = i'_{ds1} - i_{ds1} = i'_{ds1} - \frac{1}{L_1} \{ v_{ds1} + \sigma_2 \} \\
 & \dot{e}_5 = i'_{qs2} - i_{qs2} = i'_{qs2} - \frac{1}{L_2} \{ v_{qs2} + \sigma_3 \} \\
 & \dot{e}_6 = i'_{ds2} - i_{ds2} = i'_{ds2} - \frac{1}{L_2} \{ v_{ds2} + \sigma_4 \} \\
\end{aligned} \]
(20)

Where:
\[\begin{aligned}
 & \sigma_1 = \frac{1}{L_1} \{ -r_1 i_{qs1} - \omega_2^* (L_1 i_{ds1} + \varphi_{dr}) \} \\
 & \sigma_2 = \frac{1}{L_1} \{ -r_1 i_{ds1} - \omega_2^* (L_1 i_{qs1} + \varphi_{dr} \varphi_{ds}) \} \\
 & \sigma_3 = \frac{1}{L_2} \{ -r_2 i_{qs2} + \omega_2^* (L_2 i_{ds2} + \varphi_{dr}) \} \\
 & \sigma_4 = \frac{1}{L_2} \{ -r_2 i_{ds2} + \omega_2^* (L_2 i_{qs2} + \varphi_{dr} \varphi_{ds}) \} \\
\end{aligned} \]

The final Lyapunov function is given by:
\[V_2 = \frac{1}{2} (e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2 + e_6^2) \]
(21)

Its derivative in function of time is:
\[\dot{V}_2 = e_1 \dot{e}_1 + e_2 \dot{e}_2 + e_3 \dot{e}_3 + e_4 \dot{e}_4 + e_5 \dot{e}_5 + e_6 \dot{e}_6 \]

\[\begin{aligned}
 & = -K_1 e_1^2 - K_2 e_2^2 - K_3 e_3^2 - K_4 e_4^2 - K_5 e_5^2 - K_6 e_6^2 \\
 & + e_3 \left(K_3 e_3 - \sigma_1 + i_{qs1} \right) \frac{1}{L} v_{qs1} \\
 & + e_4 \left(K_4 e_4 - \sigma_2 + i_{ds1} \right) \frac{1}{L} v_{ds1} \\
 & + e_5 \left(K_5 e_5 - \sigma_3 + i_{qs2} \right) \frac{1}{L} v_{qs2} \\
 & + e_6 \left(K_6 e_6 - \sigma_4 + i_{ds2} \right) \frac{1}{L} v_{ds2} \\
\end{aligned} \]

Where \(K_2, K_4, K_5, K_6\) are positive constants.

The control voltages are selected like:
\[\begin{aligned}
 & v'_{qs1} = L_1 [K_3 e_3 - \sigma_1 + i_{qs1}] \\
 & v'_{ds1} = L_1 [K_4 e_4 - \sigma_2 + i_{ds1}] \\
 & v'_{qs2} = L_2 [K_5 e_5 - \sigma_3 + i_{qs2}] \\
 & v'_{ds2} = L_2 [K_6 e_6 - \sigma_4 + i_{ds2}] \\
\end{aligned} \]
(22)

The stability of the control is obtained if and only if a good choice of gains \(K_2, K_4, K_5, K_6\) is made.

Fig. 4 shows the block diagram of the proposed control design.

Fig. 4. Block diagram of the proposed backstepping control for DSIG.
4. Grid Side Power Control

The inverter 3 in Fig. 6 is connected between the DC bus and the electrical network through RL filter. This inverter has two functions: to keep the DC bus voltage constant, irrespective of the amplitude and direction of the power flow and to maintain a unit power factor at the point of connection with the electrical network [28].

The mathematical modeling of the studied DC link system is as follows [29]:

$$\frac{du_{dc}}{dt} = \frac{1}{C}(i_{dc} - i_m)$$

(23)

Where:

$$i_{dc} = i_{d1} + i_{d2}$$

Network reference currents expressions can be represented by:

$$\begin{cases}
i_{dg}^* = \frac{p_g v_{dg} + q_g v_{qg}}{v_{dg} + v_{qg}} \\
i_{qg}^* = \frac{p_g v_{qg} - q_g v_{dg}}{v_{qg}^2 + v_{dg}^2} \end{cases}$$

(24)

The grid active and reactive powers are described by:

$$\begin{cases} P_s = v_{dg} i_{d1} + v_{qg} i_{q1} \\
Q_s = v_{qg} i_{d1} - v_{dg} i_{q1} \end{cases}$$

(26)

The block diagram of the control loops for the currents axis (d, q) is described in Fig. 5. The correctors used are of the PI type. This block diagram includes the terms of decoupling and compensation in order to be able to independently control the currents circulating in the RL filter and the active and reactive powers exchanged between the CCR and the network.

The network currents are expressed as:

$$\begin{cases} i_{dg} = \frac{1}{(R_t + L_s)} (v_{d - \text{inv}} - v_{dg} - L_t \omega_s i_{qg}) \\
i_{qg} = \frac{1}{(R_t + L_s)} (v_{q - \text{inv}} - v_{qg} + L_t \omega_s i_{dg}) \end{cases}$$

(25)

The grid active and reactive powers are described by:

$$\begin{cases} P_s = v_{dg} i_{d1} + v_{qg} i_{q1} \\
Q_s = v_{qg} i_{d1} - v_{dg} i_{q1} \end{cases}$$

(26)

The block diagram of the grid side power control.

The synoptic scheme of the studied system is shown in Fig. 6.
The simulation results of the control system, already presented, are implemented using Matlab/Simulink software for the wind speed profile and power coefficient max depicted in Fig.7 and Fig.8 respectively. The overall control scheme is summarized in FIG. 6. All of its blocks are first programmed separately using the expressions detailed in the text. Only the basic elements of the Simulink library are used with fixed step size of sampling frequency 10^4 Hz. The DSIG used in this work is of 1.5 MW, whose nominal parameters are indicated in appendix.

It is clear from Fig.9 that the rotation speed follows perfectly its reference, which varies depending on the imposed wind profile. We can see from Fig.10 that the speed error, given by e1, converges to zero rapidly. The waveform of the electromagnetic torque generator follows its reference resulting from the MPPT algorithm as shown in Fig.11. The evolution of DSIG stator currents in the first phase of each star between (10.99 and 11.06 s) is shown in Fig.12. These currents are sinusoidal and displaced with α = 30°.

The direct rotor flux of the DSIG and its reference is illustrated in Fig.13. We can find in Fig.14, that the rotor flux error, given by e2, converges to zero. The voltage and current grid and their zoom are given in Fig.15.a and b respectively. It is clear that the current has sinusoidal form and opposite phase with respect to the voltage, meaning that power flows from the aero generator to the grid. The DC link voltage in Fig.16 is constant and follows its set level 1130 V. Fig.17 in turn, gives the spectrum THD (total harmonic distortion) of the grid current I_g. It is defined as the ratio of total effective value of harmonics (their quadratic sum) to the rms value of the fundamental component. We will analyze a sequence of time. As we see, the harmonics appearing in the grid current are minimized. It can be seen from Fig.18 and 19 that the active and reactive grid powers follow in an acceptable way in accordance to their references at all simulation time. In order to get a unit power-factor in network side, the reactive power reference Q^*_g is fixed at zero value.
Fig. 7. Profile of wind speed.

Fig. 8. Power Coefficient C_p.

Fig. 9. DSIG speed and its reference.

Fig. 10. DSIG speed error.

Fig. 11. DSIG Torque and its reference.

Fig. 12. Zoom of Stator currents.

Fig. 13. Direct rotor flux.

Fig. 14. Direct rotor flux error.
A voltage dip is a sudden drop in the supply voltage at one point of an electrical power network. The voltage dips are characterized by their amplitude and duration. They are the most common cause of power quality problems. Voltage dips are caused by events leading to high currents, which generate a voltage drop over at least significant through the impedances of the network elements. In this section, we will test the performance of our system with respect to a symmetrical fault voltage varying in amplitude and duration corresponding to a voltage dip of 20% to be held at $t = 10$s and disappear at $t = 15$s. As the DSIG operates in steady state, the voltage and current grid of the default network during 5s are shown in Fig. 20 a and 20 b. The variation of the active and reactive power generated in function of time is shown in Fig. 21 and 22 respectively. After a short transitional phase the active and reactive grid powers follow in an acceptable way their references, even with default.
This work has been conducted to present the modeling and the simulation of a wind turbine with variable speed in order to maximize energy extraction from the wind. The turbine is connected to the grid through a DSIG which increasingly used in high power systems, in spite of its several advantages. It has some complexity in implementation of its control strategy. For this drawback, a nonlinear backstepping technique is proposed in order to get a flexible control which ensure the stability of the system. A simulation results allow us to show the proposed algorithm capabilities, in terms of regulation, tracking and disturbance rejection, and demonstrating the robustness of this technique. For example, it can advantageously replace conventional PI control. From a conceptual point of view, we can notice that the backstepping control is simpler and easier to implement and has very interesting global stability properties.

A control vector is achieved to control independently the grid active and reactive powers. Good results were obtained.
with respect to the adjustment of the parameters. To improve the effectiveness and the performance of the control system we complete our study by treating the influence of a voltage dip on the wind conversion system. The control strategy of the entire system brings a satisfactory results and robust performance.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_m</td>
<td>Magnetizing inductance</td>
</tr>
<tr>
<td>R_r</td>
<td>Rotor resistance</td>
</tr>
<tr>
<td>L_r</td>
<td>Rotor inductance</td>
</tr>
<tr>
<td>J</td>
<td>Inertia moment</td>
</tr>
<tr>
<td>f</td>
<td>Viscous coefficient</td>
</tr>
<tr>
<td>ω_{gl}</td>
<td>Sliding speed</td>
</tr>
<tr>
<td>ω_s</td>
<td>Synchronous reference frame speed</td>
</tr>
<tr>
<td>Ω_{mec}</td>
<td>Rotor electrical angular speed</td>
</tr>
<tr>
<td>Ω</td>
<td>Mechanical speed of the DSIG</td>
</tr>
<tr>
<td>v_{ds1}</td>
<td>d-q stator voltages</td>
</tr>
<tr>
<td>v_{ds2}</td>
<td>d-q stator voltages</td>
</tr>
<tr>
<td>v_{qs1}</td>
<td>d-q rotor voltages</td>
</tr>
<tr>
<td>v_{qs2}</td>
<td>d-q rotor voltages</td>
</tr>
<tr>
<td>i_{ds1}</td>
<td>d-q stator currents</td>
</tr>
<tr>
<td>i_{ds2}</td>
<td>d-q stator currents</td>
</tr>
<tr>
<td>i_{qs1}</td>
<td>d-q rotor currents</td>
</tr>
<tr>
<td>i_{qs2}</td>
<td>d-q rotor currents</td>
</tr>
<tr>
<td>l_t</td>
<td>Filter inductance</td>
</tr>
<tr>
<td>R_t</td>
<td>Filter resistance</td>
</tr>
<tr>
<td>C</td>
<td>capacitance of the DC link voltage</td>
</tr>
</tbody>
</table>

References

