Analysing Wind Turbine States and SCADA Data for Fault Diagnosis

Lorenzo Scappaticci, Nicola Bartolini, Alberto Garinei, Matteo Becchetti, Ludovico Terzi


The diffusion of Supervisory Control And Data Acquisition (SCADA) systems has revolutionized the management of wind farms. Advanced performance optimization can lead to considerable improvement of power extraction, and therefore might also extend the possibilities for exploiting the wind resource. The price to pay is the challenge in elaborating vast amount of information into knowledge and visualizing them intuitively. Further challenge lies in the stochastic nature of the wind resource and in the complex mechanical structure of wind turbines: the optimization task therefore lies at the crossroad of physics, statistics, mechanical engineering, data visualization. This has led to fruitful collaboration between academy and industry, as the present work is. In this study, a data mining and graphical method for elaborating wind turbine dynamics is formulated. Its key points are intuitiveness and versatility: the method can be used for a bird’s eye view on a portfolio of wind turbines, for diagnosing and preventing fault onsets. The output doesn’t depend on the nature of the single SCADA supplier and is potentially universal. In this work, some examples of applications to a wind farm sited in France are discussed.

Total Views: 753

Full Text:



Castellani F, Burlando M., Taghizaded S., Astolfi D:, Piccioni E. Wind energy forecast in complex sites with a hybrid neural network and CFD based method. Energy Procedia, Volume 45, 188-197 (2014)

Paramasivan, S. K., & Lopez, D. (2016). Forecasting of Wind Speed using Feature Selection and Neural Networks. International Journal of Renewable Energy Research (IJRER), 6(3), 833-837.

Castellani, F., Astolfi, D., Mana, M., Burlando, M., Meißner, C., & Piccioni, E. (2016, September). Wind Power Forecasting techniques in complex terrain: ANN vs. ANN-CFD hybrid approach. In Journal of Physics: Conference Series (Vol. 753, No. 8, p. 082002). IOP Publishing.

Kusiak A., Zhang Z., Verma A.: Prediction, operations and condition monitoring in wind energy. Energy 60 (0) (2013) 1-12.

Bin Lu, Yaoyu Li, Xin Wu, Yang Z.: A review in recent advances in wind turbine condition monitoring and fault diagnosis. Power Electronics and Machines in Wind Applications, 2009. PEMWA 2009 IEEE, 1-7.

Yang W., Court R., Jiang J.: Wind turbine condition monitoring by the approach of SCADA data analysis. Renewable Energy 53(0) (2013): 365–376.

Wilkinson M., Darnell B., van Delft T., Harman K.: Comparison of methods for wind turbine condition monitoring with SCADA data. Renewable Power Generation, IET 8(4) (2014): 390–397.

Feng Y., Qiu Y., Crabtree C.J., Long H., Tavner P.J.: Monitoring wind turbine gearboxes. Wind Energy, 16(5) (2013): 728–740.

Astolfi D, Castellani F., Terzi L.: Fault prevention and diagnosis through SCADA temperature data analysis of an onshore wind farm. Diagnostyka, 15. (2014).

Castellani, F., D'Elia, G., Astolfi, D., Mucchi, E., Giorgio, D., & Terzi, L. Analyzing wind turbine flow interaction through vibration data. In Journal of Physics: Conference Series (Vol. 753, No. 11, p. 112008). IOP Publishing.

Ahadi, A. (2016). Wind Turbine Fault diagnosis Techniques and Related Algorithms. International Journal of Renewable Energy Research (IJRER), 6(1), 80-89.

Castellani F., Garinei A., Terzi L., Astolfi D., Moretti M., Lombardi A.: A new data mining approach for power performance verification of an on-shore wind farm. Diagnostyka 14 (2013).

Astolfi D., Castellani F., Garinei A., Terzi L.: Data mining techniques for performance analysis of onshore wind farms. Applied Energy 148: 220–233. (2015).

Castellani F., Garinei A., Terzi L., Astolfi D., Gaudiosi M.: Improving windfarm operation practice through numerical modelling and supervisory control and data acquisition data analysis. Renewable Power Generation, IET 8 (4) (2014) 367-379.

Roy S.: Performance prediction of active pitch-regulated wind turbine with short duration variations in source wind. Applied Energy 114: 700–708. (2014).

Mikkelsen T., Hansen K.H., Angelou N., Sjholm M., Harris M., Hadley P., Scullion R., Ellis G, Vives G.: Lidar wind speed measurements from a rotating spinner. European Wind Energy Conference and Exhibition. (2010).

Castellani F., Astolfi D., Terzi L., Hansen K.S., Rodrigo J.S.: Analysing wind farm efficiency on complex terrains. Journal of Physics: Conference Series 524, 1.

Barthelmie R., Hansen K., Pryor S.: Meteorological controls on wind turbine wakes. Proceeding of the IEEE 101 (4) (2013) 1010-1019.

Barthelmie R., Pryor S., Frandsen S., Hansen K., Schepers J., Rados K., Schlez W., Neubert A., Jensel L., Neckelmann S.: Quantifying the impact of wind turbine wakes on power output at offshore wind farms. Journal of Atmospheric and Oceanic Technology 27 (8) (2010) 1302-1317.

Mc Kay P., Carriveau R., Ting D.S.K.: Wake impacts on downstream wind turbine performance and yaw alignment. Wind Energy 16 (2013) 221-234.

Hansen K., Barthelmie R., Jensen J., Sommer A.: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev offshore wind farm. Wind Energy 15 (1) (2012) 183-196.

Porté - Agel F., Wu Y.T., Chen C.H.: A numerical study of the effects of wind direction on turbine wakes and power losses in a large wind farm. Energies 2013; 6(10): 5297–5313.

Gaumond M., Réthoré P.E., Ott S., Pena A., Bechmann A., Hansen K.S.: Evaluation of the wind direction uncertainty and its impact on wake modeling at the horns rev offshore wind farm. Wind Energy 2014; 17(8):1169–1178.

Marathe N., Swift A., Hirth B., Walker R., Schroeder J.: Characterizing power performance and wake of a wind turbine under yaw and blade pitch. Wind Energy 2015.

Iungo G.V.: Experimental characterization of wind turbine wakes: Wind tunnel tests and wind lidar measurements. Journal of Wind Engineering and Industrial Aerodynamics 2016; 149:35–39.

Moreno P., Gravdahl A.R., Romero M.: Wind flow over complex terrain: application of linear and cfd models. European wind energy conference and exhibition, 2003; 16–19.

Makridis A., Chick J.: Validation of a cfd model of wind turbine wakes with terrain effects. Journal of Wind Engineering and Industrial Aerodynamics 2013; 123:12–29.

Rodrigo J.S., Gancarski P., Arroyo R.C., Moriarty P., Chuchfield M., Naughton J.W., Hansen K.S., Machefaux E., Koblitz T., Maguire E., et al.. Iea-task 31 wakebench: Towards a protocol for wind farm flow model evaluation. part 1: Flow- over-terrain models. Journal of Physics: Conference Series, vol. 524, IOP Publishing, 2014.

Moriarty P., Rodrigo J.S., Gancarski P., Chuchfield M., Naughton J.W., Hansen K.S., Machefaux E., Maguire E., Castellani F., Terzi L., et al. Iea-task 31 wakebench: Towards a protocol for wind farm flow model evaluation. part 2: Wind farm wake models. Journal of Physics: Conference Series, vol. 524, IOP Publishing, 2014.

Castellani F., Astolfi D., Garinei A., Proietti S., Sdringola P., Terzi L, Desideri U.: How wind turbines alignment to wind direction affects efficiency? A case study through SCADA data mining. Energy Procedia 75: 697-703 (2015).

Castellani F., Astolfi D., Piccioni E., Terzi L.: Numerical and experimental methods for wake flow analysis in complex terrain. Journal of Physics: Conference Series, 625. IOP Publishing (2015).

Castellani F., Astolfi D., Sdringola P., Proietti S., Terzi L.: Analyzing wind turbine directional behavior: SCADA data mining techniques for efficiency and power assessment. Applied Energy (2015).

Castellani F., Astolfi D., Burlando M., Terzi L.: Numerical modelling for wind farm operational assessment in complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 147: 320-329. (2015).

Astolfi D., Castellani F., Terzi L.: Mathematical methods for SCADA data mining of onshore wind farms: Performance evaluation and wake analysis. Wind Engineering 40 (1): 69-85. SAGE Publications. (2016).

Castellani F., Gravdahl A., Crasto G., Piccioni E., Vignaroli A. A practical approach in the CFD simulation of off-shore wind farms through the actuator disc technique. Energy Procedia 35: 274-284. (2013)


  • There are currently no refbacks.

Online ISSN: 1309-0127;;

IJRER is cited in SCOPUS, EBSCO, WEB of SCIENCE (Clarivate Analytics) 

WEB of SCIENCE between 2016-2018; 


Average citation per item=2.44

Impact Factor=(136+635+1053)/(179+225+229)=2.88